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We have integrated the CDF calorimeter reconstruction and simulation into a
cohesive software package. The design includes layers of indirection which provide
a flexible physics analysis environment. New algorithms are easy to implement in
the design: including legacy code in fortran. Finally, we describe how the new
jet clustering code can be transported outside of the CDF software environment
making it possible for the first time at CDF for theorists to study our jet algorithm.

1 Introduction

CDF has chosen C++ as the primary computing language for the analysis
software in the upcoming Tevetron run at Fermilab. Upgrading the calorime-
ter software affords us an opportunity to improve the design. In the following
paper, I will show the OO code design classes for calorimeter tower reconstruc-
tion and simulation as well as the jet reconstruction. The new design integrates
the reconstruction and simulation. It includes abstract interface classes to im-
prove flexibility for physics analyses. These layers of abstraction allow one to
isolate the CDF jet algorithm from the CDF framework - making it possible
to run in a standalone mode as well as in the CDF code environment. Since
reconstruction tasks have been assigned to well defined classes, the new code
is readable and new algorithms are easily incorporated. Furthermore, the new
design can be interfaced to legacy (fortran) algorithms.

A fundamental property of sampling calorimeters is that electromagnetic
(hadronic) showers occur early (late): their longitudinal and transverse shape
depending on the radiation (interaction) length of the detector material. Show-
ers are detected by amplifying and digitizing signals from a localized region.
Signal detection is expensive and usually limits the detector segmentation to
fairly course electromagnetic and hadronic towers.

2 Calorimeter Reconstruction and Simulation

We begin to reconstruct the data by defining a HardwareKey class which can
contains the address of each photo-multiplier tube (PMT) readout by the front-
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end electronics at CDf. We have found the enumeration relating the calorime-
ter acronyms to an integer to be particularly useful. This key also contains
an isValid method to determine the validity of its internal data based on the
geometry database.

For reconstruction, we define the RecoKey class which treats the detec-
tor hermetically as a grid of towers uniquely identified by a pair of integers
(ieta,iphi). This grid is not necessarily a simple grid. For our purposes, some-
times the iphi ranges from 0 to 23 and at others it ranges from 0 to 47. Again
an isValid method is provided to validate the internal data based on the geom-
etry database. In addition to knowing the mapping of hardware keys onto
reconstruction keys, this key can return a list of its neighboring towers.

The calorimeter tower attributes are maintained by the CalTower class.
The energy is measured in the calorimeter PMT’s. The position of this energy
is determined from the geometry database and the measured event vertex.
The combined information is a four-vector. Towers are assumed to be massless
(Ip| == E).

An architecture diagram of the CDF calorimeter reconstruction and simu-
lation is shown in figure 1. It centers around a CalBankMaker class which reads
raw persistent data off of a file somewhere, retrieves the hardware key for a
piece of data, fetches the relevant calibration constant, converts the data from
digitized counts into energy (GeV), converts the hardware key into a recon-
struction key and then writes the energy out to the element bank based on the
reconstruction key. The same mechanism is used by the simulation to convert
the element data into raw data. The simulation also shares the information in
the geometry database with the reconstruction, unifying the calorimeter code
design.

3 Jet Reconstruction

In a mathematical sense, jets can be defined as non-overlapping subsets of
calorimeter towers. The algorithm which separates the list of towers into these
subsets is more or less irrelevant to the code architecture. An architecture
diagram of the CDF jet reconstruction code is shown in figure 2. The jet
reconstruction uses the same element bank and reconstruction key described
earlier. Other than these, it is completely independent of the calorimeter
reconstruction.

The input set of CalTowers is maintained by a TowerCollection class. This
class provides an iterator for the collection as well as random access based on a
reconstruction key. It is desirable to make the tower collection based on either
the calorimeter data stored in the element bank, or from monte-carlo gener-
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ated particles via the generated particle bank. An abstract InputSource class
is provided to add this flexibility. In addition, the current CDF jet algorithm
sums towers according to the Snow Mass Convention, ' but another sensible
method for summing towers is to treat each like a four-vector. To facilitate
studying the physics impact on tower summing algorithms, an abstract Calcu-
lator class has been defined and the concrete calculation can be chosen at run
time.

The jet clustering algorithm itself is driven from a set of parameters. Each
algorithm is required to have a name, input source, and calculator. Cone
clustered jets have specific parameters such as thresholds and cone radius. Kt
clustered jets have thresholds and a ymin cut. The output of the clustering
routine is a list of jets, which are associated with a particular set of parameters.
To make the jets persistent, a makeBanks method is included. To access
the jets from the persistent data, a readBanks method is included. When
the jets are recorded, they are recorded with their parameters. When they
are read back in, only those with the current ConeParms are included in the
JetCandidates class. Thus at any time, the list of jets in an instance of the
Conelets class is unique and self consistent.

Two related aspects of the code design remain. The first is our ability
to export the CDF jet clustering algorithm outside the CDF framework. The
second is our ability to import well-documented legacy clustering algorithms
(mostly in fortran).

The current jet clustering algorithms can be accessed in stand-alone mode
if a few criteria are met. The user must provide a reconstruction Key describ-
ing at least a minimal set of the desired calorimeter geometry. This separates
the external user from the CDF geometry data base. The input source can be
separated from the CDF persistent data, by providing a concrete InputSource
which depends only on the HepEvt common block or the C++ equivalent struc-
ture. 2 Finally, the jets will be provided to the user without the makeBanks and
readBanks methods which depend on the CDF persistent data. The towerCol-
lection and output jets will be extremely useful for studying calorimeter-based
physics.

A separate issue is encorporating well-documented legacy algorithms into
the jet analysis at CDF. Examples of existing jet clustering algorithms are
PYTHIA’s lucell, ® and the Kt algorithm . In all cases, these algorithms
use the HepEvt common block or an array of four-vectors for their input.
In addition, a list of parameters must be passed into the algorithm. Only
three steps are necessary to interface these algorithms to the CDF software.
The calorimeter tower information must be converted to a collection of four-
vectors. The external fortran clustering routine must be called passing in
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parameters and the four-vector array as necessary. And, finally, the output
must be converted into JetCandidates and made persistent. The legacy code
fits nicely into the jet reconstruction design with a minimum of data-copying.

4 Conclusions

We have integrated the CDF calorimeter reconstruction and simulation. At
the same time, the jet reconstruction has been isolated from the low level tower
reconstruction. Tasks have been assigned to well defined classes. The design
includes layers of indirection to provide a flexible physics analysis environment.
Inputs, parameters and algorithms may be varied with relative ease. New al-
gorithms are easy to implement - including legacy code. And finally, the new
jet clustering code can be transported outside of the CDF software environ-
ment making it possible for the first time for theorists to study the CDF jet
algorithm.
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Figure 1: Architecture diagram for the CDF calorimeter reconstruction and simulation code.
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Figure 2: Architecture diagram for the CDF jet reconstruction code.



